0=(23t^2-29t+6)

Simple and best practice solution for 0=(23t^2-29t+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(23t^2-29t+6) equation:



0=(23t^2-29t+6)
We move all terms to the left:
0-((23t^2-29t+6))=0
We add all the numbers together, and all the variables
-((23t^2-29t+6))=0
We calculate terms in parentheses: -((23t^2-29t+6)), so:
(23t^2-29t+6)
We get rid of parentheses
23t^2-29t+6
Back to the equation:
-(23t^2-29t+6)
We get rid of parentheses
-23t^2+29t-6=0
a = -23; b = 29; c = -6;
Δ = b2-4ac
Δ = 292-4·(-23)·(-6)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-17}{2*-23}=\frac{-46}{-46} =1 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+17}{2*-23}=\frac{-12}{-46} =6/23 $

See similar equations:

| 2+x-3(x+1)=8x-2 | | 3/5n=3/10 | | 5−4+7x+1=x+ | | 2z/9+4=-5 | | 12x+4=37 | | 2÷3c+2=1 | | (.1-x)(.05-x)(.05-x)=1.8*10^-12 | | 6=w/15.36 | | x/4+15=43 | | 10^(x+1)=95 | | x(x+2)(x+4)(x+6)(x+8)=328185 | | 2x+21=5x−15 | | 4=-4/5+w | | (9+x)÷3=2 | | 2^(3x-1)=8 | | 9+x÷3=2 | | 6/7t=2(4/7t-2/15) | | 2^3x-1=8 | | 9x-18=8+ | | y2+7=11 | | 5+2/3w=21-1/3w | | -(4x+8)=96 | | 9x-7=-7+7 | | w2+11w=0 | | -0.25x=0.80-0.45x | | 16x+2+50=180 | | 9/18-y=2 | | X2-19x=0 | | 700(1000)+1200x=1,000,000 | | 1/4(4x-8)=1/2x+8 | | 5x-15=3x+13 | | 3^x^2/3^3x=1/9 |

Equations solver categories